Face feature extraction and recognition based on discriminant subclass-center manifold preserving projection
نویسندگان
چکیده
Manifold learning is an effective dimensional reduction technique for face feature extraction, which, generally speaking, tends to preserve the local neighborhood structures of given samples. However, neighbors of a sample often comprise more inter-class data than intra-class data, which is an undesirable effect for classification. In this paper, we address this problem by proposing a subclass-center based manifold preserving projection (SMPP) approach, which aims at preserving the local neighborhood structure of subclass-centers instead of given samples. We theoretically show from a probability perspective that, neighbors of a subclass-center would comprise of more intra-class data than inter-class data, and thus is more desirable for classification. In order to take full advantage of the class separability, we further propose the discriminant SMPP (DSMPP) approach, which incorporates the subclass discriminant analysis (SDA) technique to SMPP. In contrast to related discriminant manifold learning methods, DSMPP is formulated as a dual-objective optimization problem and we present analytical solution to it. Experimental results on the public AR, FERET and CAS-PEAL face databases demonstrate that the proposed approaches are more effective than related manifold learning and discriminant manifold learning methods in classification performance. 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملUsing Locality Preserving Projections in Face Recognition
Human recognition has become an essential part of variety of applications ranging from security, surveillance, control etc. It has become an important aspect when it comes to issues like authentication and identification. Human face can play an important role in identification. By developing better dimensionality reduction and feature extraction techniques, a large number of face recognition sy...
متن کاملSupervised feature extraction based on orthogonal discriminant projection
In this paper, a supervised feature extraction method, named orthogonal discriminant projection (ODP), is presented. As an extension of spectral mapping method, the proposed algorithm maximizes the weighted difference between the non-local scatter and the local scatter. Moreover, the weights between two nodes of a graph are adjusted according to their class information and local information. Ex...
متن کاملGabor Based Optimized Discriminant Locality Preserving Projection for Feature Extraction and Recognition
This paper proposed a Gabor based optimized discriminant locality preserving projections (ODLPP) algorithm which can directly optimize discriminant locality preserving criterion on high-dimensional Gabor feature space via simultaneous diagonalization, without any dimensionality reduction preprocessing. Experimental results conducted on the VALID face database indicate the effectiveness of the p...
متن کاملApplication of Locality Preserving Projections in Face Recognition
Face recognition technology has evolved as an enchanting solution to address the contemporary needs in order to perform identification and verification of identity claims. By advancing the feature extraction methods and dimensionality reduction techniques in the application of pattern recognition, a number of face recognition systems has been developed with distinct degrees of success. Locality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 33 شماره
صفحات -
تاریخ انتشار 2012